Clustering with Overlap for Genetic Interaction Networks via Local Search Optimization

نویسندگان

  • Joseph Andrew Whitney
  • Judice L. Y. Koh
  • Michael Costanzo
  • Grant Brown
  • Charles Boone
  • Michael Brudno
چکیده

Algorithms for detection of modules in genetics interaction networks, while often identifying new models of functional modular organization between genes, have been limited to the output of disjoint, non-overlapping modules, while natural overlapping modules have been observed in biological networks. We present CLOVER, an algorithm for clustering weighted networks into overlapping clusters. We apply this algorithm to the correlation network obtained from a large-scale genetic interaction network of Saccharomyces cerevisiae derived from Synthetic Genetic Arrays (SGA) that covers ~4,500 non-essential genes. We compare CLOVER to previous clustering methods, and demonstrate that genes assigned by our method to multiple clusters known to link distinct biological processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tabu-KM: A Hybrid Clustering Algorithm Based on Tabu Search Approach

  The clustering problem under the criterion of minimum sum of squares is a non-convex and non-linear program, which possesses many locally optimal values, resulting that its solution often falls into these trap and therefore cannot converge to global optima solution. In this paper, an efficient hybrid optimization algorithm is developed for solving this problem, called Tabu-KM. It gathers the ...

متن کامل

A Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS

Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...

متن کامل

OPTIMIZATION OF SKELETAL STRUCTURES USING IMPROVED GENETIC ALGORITHM BASED ON PROPOSED SAMPLING SEARCH SPACE IDEA

In this article, by Partitioning of designing space, optimization speed is tried to be increased by GA. To this end, designing space search is done in two steps which are global search and local search. To achieve this goal, according to meshing in FEM, firstly, the list of sections is divided to specific subsets. Then, intermediate member of each subset, as representative of subset, is defined...

متن کامل

Learning the Neighborhood with the Linkage Tree Genetic Algorithm

We discuss the use of online learning of the local search neighborhood. Specifically, we consider the Linkage Tree Genetic Algorithm (LTGA), a population-based, stochastic local search algorithm that learns the neighborhood by identifying the problem variables that have a high mutual information in a population of good solutions. The LTGA builds each generation a linkage tree using a hierarchic...

متن کامل

Constrained Nonlinear Optimal Control via a Hybrid BA-SD

The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011